Amplification of Completely Bounded Operators and Tomiyama’s Slice Maps
نویسنده
چکیده
Let (M,N ) be a pair of von Neumann algebras, or of dual operator spaces with at least one of them having property Sσ, and let Φ be an arbitrary completely bounded mapping on M. We present an explicit construction of an amplification of Φ to a completely bounded mapping on M⊗N . Our approach is based on the concept of slice maps as introduced by Tomiyama, and makes use of the description of the predual of M⊗N given by Effros and Ruan in terms of the operator space projective tensor product (cf. [Eff–Rua 90], [Rua 92]). We further discuss several properties of an amplification in connection with the investigations made in [May–Neu–Wit 89], where the special case M = B(H) and N = B(K) has been considered (for Hilbert spaces H and K). We will then mainly focus on various applications, such as a remarkable purely algebraic characterization of w∗-continuity using amplifications, as well as a generalization of the so-called Ge–Kadison Lemma (in connection with the uniqueness problem of amplifications). Finally, our study will enable us to show that the essential assertion of the main result in [May–Neu–Wit 89] concerning completely bounded bimodule homomorphisms actually relies on a basic property of Tomiyama’s slice maps.
منابع مشابه
Additive Maps Preserving Idempotency of Products or Jordan Products of Operators
Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...
متن کاملStability of essential spectra of bounded linear operators
In this paper, we show the stability of Gustafson, Weidmann, Kato, Wolf, Schechter and Browder essential spectrum of bounded linear operators on Banach spaces which remain invariant under additive perturbations belonging to a broad classes of operators $U$ such $gamma(U^m)
متن کاملINTUITIONISTIC FUZZY BOUNDED LINEAR OPERATORS
The object of this paper is to introduce the notion of intuitionisticfuzzy continuous mappings and intuitionistic fuzzy bounded linear operatorsfrom one intuitionistic fuzzy n-normed linear space to another. Relation betweenintuitionistic fuzzy continuity and intuitionistic fuzzy bounded linearoperators are studied and some interesting results are obtained.
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملWeighted composition operators between Lipschitz algebras of complex-valued bounded functions
In this paper, we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces, not necessarily compact. We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators. We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.
متن کامل